Environmental sustainability
A new priority for logistics managers

ALAN MCKINNON

Introduction

Logistics is the term now widely used to describe the transport, storage and handling of products as they move from raw material source, through the production system to their final point of sale or consumption. Although its core activities have been fundamental to economic development and social well-being for millennia, it is only over the past 50 years that logistics has come to be regarded as a key determinant of business performance, a profession and a major field of academic study. During this period the dominant paradigm for those managing and studying logistics has been commercial. The prime, and in many cases sole, objective has been to organize logistics in a way that maximizes profitability. The calculation of profitability, however, has included only the economic costs that companies directly incur. The wider environmental and social costs, traditionally excluded from the balance sheet, have been largely ignored – until recently.

Over the past 10–15 years, against a background of increasing public and government concern for the environment, companies have come under mounting pressure to reduce the environmental impact of their logistics operations. This impact is diverse, in terms of the range of externalities and the distances over which their adverse effects are experienced. The distribution of goods impairs local air quality, generates noise and vibration, causes accidents and makes a significant contribution to global warming. The impact of logistics on climate change has attracted increasing attention in recent years, partly because tightening controls on pollution and road safety...
improvements have alleviated the other environmental problems, but also because new scientific research has revealed that global warming presents a much greater and more immediate threat than previously thought.

It is estimated that freight transport accounts for roughly 8 per cent of energy-related CO₂ emissions worldwide (Kahn Ribeiro and Kobayashi, 2007). The inclusion of warehousing and materials handling is likely to add around 2–3 per cent to this total. The World Economic Forum and Accenture (2009) have estimated that logistical activity accounts for roughly 5.5 per cent of total global greenhouse gas (GHG) emissions (including all the GHGs and not simply CO₂). They suggest that ‘logistics buildings’ emit 9–10 per cent of the total, with the rest coming from freight transport. Trucks and vans are responsible for two-thirds of these transport GHG emissions. In the road transport sector, the amount of energy used to move freight is increasing at a faster rate than the energy consumed by cars and buses, and, in the European Union, may overtake it by the early 2020s (European Commission, 2003). If CO₂ emissions from shipping grow at their forecast rate while governments cut emissions from their national economies by an average of 50 per cent by the middle of the century in line with current targets, shipping alone could account for 15–30 per cent of total CO₂ emissions by 2050, even allowing for a 33–50 per cent improvement in its energy efficiency by then (Committee on Climate Change, 2008). It is hardly surprising, therefore, that governments and intergovernmental organizations are developing carbon abatement policies for the freight transport sector.

Making logistics ‘sustainable’ in the longer term will involve more than cutting carbon emissions. Despite recent improvements, the potential still exists to cut the other environmental costs of logistics by a significant margin. Furthermore, sustainability does not only have an environmental dimension. Sustainable development was originally portrayed as the reconciliation of environmental, economic and social objectives (Brundtland Commission, 1987). The expression ‘triple bottom line’ is often used in the business world to convey this notion of a three-way trade-off. The concept also underpins government strategies on sustainable distribution, such as that of the UK government (DETR, 1999a). In practice, however, many of the measures that reduce the environmental impact of logistics, the so-called ‘green-gold’ measures, also save money, avoiding the need to trade off economic costs against environmental benefits. While the main focus of this book is on ways of reducing the environmental effects of logistics, frequent reference is also made to their economic and social implications.

The issues discussed in this book are topical, important and currently engaging the attention of company managers and policy makers in many countries around the world. They are examined from both corporate and public policy perspectives. The book aims to provide a broad overview of technical, managerial, economic and policy aspects of green logistics, and as a result to improve understanding of the various problems that have to be overcome in assessing and addressing the environmental consequences of logistical activities. It contains case studies and examples of the types of
initiatives that can be taken at different levels, ranging from those within a single company to those that span an entire supply chain and possibly involve businesses in several countries. The book also explores the range of approaches and analytical tools available to academics and practitioners working in the field of green logistics.

Green logistics is a relatively young but rapidly evolving subject. This is a good time to take stock, reflect on the work that has been done to date and assess the challenges ahead. The remainder of this chapter lays a foundation for the book by reviewing the development of the subject over the past 50 years. It also presents an analytical framework for the study of green logistics and concludes with a brief outline of the other 16 chapters.

A brief history of green logistics research

It is difficult to decide when research on green logistics began. One possible starting point would be the publication of the first paper on an environmental theme in a mainstream logistics journal. This, however, would ignore a large body of earlier research on the environmental effects of freight transport undertaken before logistics gained recognition as a field of academic study. While concern was expressed about the damaging effects of freight transport in the 1950s, most of the substantive research on the subject dates from the mid-1960s. Murphy and Poist (1995: 16) assert that: ‘prior to the 1960s, there was relatively little concern regarding environmental degradation. For the most part, the environment’s ability to absorb wastes and to replace resources was perceived as being infinite.’ This review is therefore confined to the past 40 years, but it ‘casts its net wide’ to capture a broad assortment of relevant literature in journals, books and reports. In their review of 10 logistics, supply management and transport journals over the period 1995–2004, Aronsson and Huge-Brodin (2006) found that only 45 papers out of 2,026 (2.2 per cent) addressed environmental issues. When the publication horizons are extended by time and type of output, however, one uncovers a large, well-established and vibrant field of research.

What we now call ‘green logistics’ represents the convergence of several strands of research that began at different times over the past 40 years. Figure 1.1 groups these strands under five headings: reducing freight transport externalities, city logistics, reverse logistics, corporate environmental strategies towards logistics, and green supply chain management. This extends the threefold classification of green logistics research adopted by Abukhader and Jonsson (2004), which comprises environmental assessment, reverse logistics and green supply chains. Figure 1.1 also proposes a tentative chronology for research activity on these topics and depicts three more general trends that have, since the 1960s, altered the context and priorities of the research. These are shown as wedges to reflect a broadening perspective:
FIGURE 1.1 Evolving perspectives and themes in green logistics

perspectives

public
private
operational
strategic
local

themes

Reducing freight transport externalities
City logistics
Reverse logistics
Logistics in corporate environmental strategies
Green supply chain management

1970s
1980s
1990s
2000s

road
other modes
modal split
Public-to-private: much of the early research was driven by a public policy agenda as newly emergent environmental pressure groups began to lobby for government intervention to mitigate the damaging effects of freight movement and public agencies sought to improve their understanding of the problem and find means of addressing it. Through time, this public sector interest in the subject has been complemented by a growth in private sector involvement in green logistics research as businesses have begun to formulate environmental strategies both at a corporate level and more specifically for logistics.

Operational-to-strategic: a second general trend has been a broadening of the corporate commitment to green logistics, from the adoption of a few minor operational changes to the embedding of environmental principles in strategic planning.

Local-to-global: in the 1960s and 70s the main focus was on the local environmental impact of air pollution, noise, vibration, accidents and visual intrusion. No reference was made to the global atmospheric effects of logistical activity. Indeed in the 1970s some climate models predicted that the planet was entering a new ice age! The transcontinental spread of acid rain (from sulphur emissions) and depletion of the ozone layer (caused mainly by chlorofluorocarbons) during the 1980s demonstrated that logistics and other activities could have a more geographically extensive impact on the environment. With climate change now the dominant environmental issue of the age, the impact of logistics on global atmospheric conditions has become a major focus of research.

The context within which research on green logistics has been undertaken has also been evolving in other ways. Over the past 40 years, logistics has developed as an academic discipline, extending its original focus on the outbound movement of finished products (physical distribution) to companies’ entire transport, storage and handling systems (integrated logistics) and then to the interaction with businesses upstream and downstream (supply chain management). This has extended the scope of green logistics research in terms of the functions, processes and relationships investigated (McKinnon, 2003). Other major contextual trends include the growth of environmental awareness, the proliferation of environmental regulations, and the development of national and international standards for environmental reporting and management that many companies now adopt as part of their corporate social responsibility (CSR) programmes. Partly as a result of these trends, the volume of statistics available to green logistics researchers has greatly expanded and companies have become more willing to support studies in this field.

In reviewing the development of green logistics as a field of study, one detects international differences in research priorities. Although a survey by Murphy and Poist (2003) of samples of US and ‘non-US’ companies found
strong similarities in the environmental perceptions and practices of logistics management, research efforts have tended to be skewed towards topics of national interest. In the UK, for example, much of the early research on green logistics was a response to a public dislike of heavy lorries. In Germany, research on reverse logistics was stimulated by the introduction of radical packaging-waste legislation in the early 1990s. Until recently, reverse logistics attracted much more attention from US researchers than other aspects of green logistics, with much of the corporate interest in the subject related to its impact on costs and profitability rather than on the environment.

Reducing freight transport externalities

Much of the early research on the environmental impact of logistics was motivated by the growth of lorry traffic at a time when lorries were much noisier and more polluting than today. Numerous studies were conducted in the 1970s to assess the nature and scale of these effects, many of them in the UK. Their focus was on the local environmental impact of lorries. Reports published by environmental pressure groups catalogued the environmental damage they were causing and demanded government action to contain the ‘lorry menace’. Campaigners were particularly alarmed by official forecasts that freight traffic volumes would continue to grow steeply for the foreseeable future. In the UK, the government responded by setting up an inquiry to examine the effects of lorries on the environment and explore ways of minimizing them (Pettit, 1973). This led to the formation of the Lorries and the Environment Committee, an organization which between 1974 and 1979 published several reports on ways of rationalizing the movement of freight by road. The UK government, nevertheless, felt it necessary to commission a much wider investigation of ‘lorries, people and the environment’. The report of this inquiry (Armitage, 1980) provided a useful review of lorry-related externalities, the causes of road freight growth and the options for mitigating its environmental effects. It was preoccupied, however, with local planning and regulatory issues, and antagonized environmental groups at the time by recommending an increase in the maximum gross lorry weight from 32 to 44 tonnes. At an international level, the OECD (1982) also published a report on the effects of heavy trucks on the environment and explored ways in which they might be reduced.

Advances in vehicle technology and tightening regulations on emission levels gradually reduced transport externalities per vehicle-km. It was recognized, however, that much of the environmental improvement being achieved at the individual vehicle level was being eroded by the underlying growth in road freight traffic (Adams, 1981; Whitelegg, 1995). Reducing the environmental burden imposed by freight transport would, therefore, entail much more than improved fuel efficiency and lower exhaust emissions. More radical measures to contain the growth of road freight traffic would be required. This might be difficult to achieve, however, without jeopardizing
future economic growth. Bennathan, Fraser and Thompson (1992: 7) had
established, for a sample of 17 developed countries, that ‘the partial elasticity
of ton-kilometres by road with respect to GDP [was] about unity (1.02)’. This meant that road freight traffic was growing almost exactly in line with the economy.

Individual sectors of the economy, however, were experiencing rates of freight traffic growth well above the average and faster than the rate at which output was growing. Paxton (1994) showed how wider sourcing of food products was increasing the demand for freight transport or what she called ‘food miles’. Around the same time, Böge (1994) conducted a much-publicized study in Germany of the amount of road transport generated by the production and distribution of a pot of strawberry yoghurt. By mapping the supply chains of all the ingredients and components contained in this product she was able to demonstrate that for every pot of yoghurt sold in a German supermarket, a truck had to travel nine metres. She went on to assess the environmental impact of all the related freight transport, using this case study to illustrate how the logistical requirements of even a fairly cheap basic product could be responsible for significant amounts of pollution and noise.

These and other studies highlighted the need for more research on the process of road freight traffic growth and the extent to which it could be influenced by public policy interventions. This need was addressed by a plethora of studies conducted in several countries during the 1990s. These studies examined, to varying degrees, three methods of decoupling economic growth from road freight traffic levels: reducing the transport intensity of the economy (generally defined as the ratio of road tonne-kms to GDP), altering the freight modal split (to displace freight on to alternative modes) and improving vehicle utilization (to reduce the ratio of vehicle-kms to tonne-kms). Table 1.1 lists some of the major freight-rationalization studies undertaken during the 1990s and shows which of the three decoupling options they considered.

Much of this research adopted a broader logistical perspective, acknowledging that the restructuring of companies’ logistical systems was one of the main drivers of freight traffic growth. Research by McKinnon and Woodburn (1996), McKinnon (1998) and Cooper, Black and Peters (1998) identified a series of logistics and supply chain trends responsible for freight traffic growth. The nature of the relationship between these trends and freight traffic growth in different countries and sectors was subsequently investigated by two European Commission-funded projects called REDEFINE and SULOGTRA. As discussed in Chapter 17, there was much interest among public policy makers around the late 1990s/early 2000s in the potential for decoupling freight traffic growth from general economic growth (European Commission, 2001). Ironically, over the previous decade the link had been broken in Europe, with freight tonne-kms growing at a faster rate than the EU economy as a whole. The policy aim, however, was to decouple these variables in the opposite direction. Evidence of this ‘positive’ form of decoupling
Assessing the Environmental Effects of Logistics

had begun to emerge in some countries, such as the UK and Finland, stimulating research into the reasons for it occurring (Tapio, 2005; McKinnon, 2007). If the underlying growth in freight movement were to slacken, it would be easier for governments to make logistics more environmentally sustainable (DETR, 1999a). The main goal, however, should be to decouple economic growth from freight-related externalities rather than the growth in traffic volumes. This involves manipulating a series of key logistical parameters each of which is amenable to public policy initiatives. In the section below on ‘A model for green logistics research’, we present an analytical framework built around these key parameters, which has its heritage in the earlier studies outlined above and can serve as a model for the greening of logistics.

Table 1.1 Freight transport rationalization studies conducted during the 1990s

<table>
<thead>
<tr>
<th>Author/organization</th>
<th>Study area</th>
<th>Date</th>
<th>Modal split</th>
<th>Transport intensity</th>
<th>Vehicle utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hey et al/ EURES/Greenpeace</td>
<td>Europe</td>
<td>1992</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Peeters/Werkgroep 2000</td>
<td>Netherlands</td>
<td>1993</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DIW/ifeu/IVA/HACON</td>
<td>Germany</td>
<td>1994</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Royal Commission on Environmental Pollution</td>
<td>UK</td>
<td>1994</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Plowden and Buchan/Civic Trust</td>
<td>UK</td>
<td>1995</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Bleijenberg/CE</td>
<td>Europe</td>
<td>1996</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Holman/T&E</td>
<td>Europe</td>
<td>1996</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Pastowski/Wupperthal Institute</td>
<td>Germany</td>
<td>1997</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schipper et al/ International Energy Agency</td>
<td>OECD</td>
<td>1997</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>INDEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NB page numbers in *italic* indicate figures or tables.

21st Century Truck Partnership	148
Aarts, L and Feddes, G	217
Abukhader, S M and Jonson, G	5, 336
Accenture	4, 145, 165
acid rain	36
Adamowicz, W	75
Adams, J G U	8, 77
AdBlue	151, 239, 242
Advisory Council for Aeronautics Research in Europe (ACARE)	159, 160, 161, 162
AEA Technology	148, 151, 154, 239, 277, 279, 318
aerodynamics	147, 149, 160, 229, 238, 239–41
Affenzeller, J and Rust, A	38
Air Quality Damage Cost Guidance	84
Airbus	158, 159, 162
Akkermans, H A, Bogerd, P, Yucesan, E et al	328
Allen, J and Browne, M	152
Allen, J, Anderson, S, Browne, M et al	292
Altes, T	196
Amazon.com	333
American Petroleum Institute	166
Anable, J and Bristow, A L	361
Ando, N and Taniguchi, E	227
Ang-Olson, J and Schroer, W	244
Argos	333
Armitage, A	8, 290
Aronsson, H and Huge-Brodin, M	5, 14, 22, 109, 110, 120
Asda	142
AT Kearney	219
Avella, P, Boccia, M, Sforza, A et al	105, 106
Bailey, J P and Rabinovich, E	334
Baker, H, Cornwell, R, Koehler, E et al	249
Baker, P	179, 186
Baker, P and Canessa, M	174
Baker, P and Perotti, S	178
Bakos, J Y	328
Banner, S	155
Barcelo, J and Casanovas, J	105, 106
Barling, D, Sharpe, R and Lang, T	283
‘BasRap’	263
Battilana, J and Hawthorne, I	290
Baublys, A and Isoraite, M	75
Baugham, C J	350
Baum, H, Geisler, T, Schneider, J et al	72
Baumgaertner, M, Leonardi, J and Krusch, O	232
Beam, B	12, 103, 107, 110
Bearbox	264
Beasley, J E	105, 106
Bekta, T and Laporte, G	230
Bennathan, E, Fraser, J and Thompson, L S	9
Berbeglia, G, Cordeau, J-F, Gribkovskaia, I et al	226
BEST Urban Freight Solutions (BESTUFS)	14, 291–92
Bettac, E, Maas, K, Beullens, P et al	260
Beuthe, M, Degrandt, F, Geerts, J-F et al	75, 78
Biffa	257
biofuels	314–17
Biofuels Directive	315
Bleijenberg, A	14
Bloemhoff-Ruwaard, J M, Van Wassenhove, L N, Gabel, H L et al	111
‘Blue Map’ scenario	150
Blythman, J	277
‘boat-tails’	241
Bockel, R	301
Bode, S, Isensee, J, Karsten, K et al	162
Boden	334
Boeing	158, 159, 160
Boge, S	9
Boko, M, Niang, I, Nyong, A et al	278
Boston Consulting Group	332
Bowen, F, Cousins, P D, Lamming, R C et al	15
Brandao, J	225, 226
Breyss, O	225
BRE (Building Research Establishment)	199
BREEAM scheme	193–94, 195, 196, 198
Index

Brecke, F H and Garcia, S K 118
Bridgewater, E and Anderson, C 259
British Rail 132
British Standards Institution 53, 60
British Sugar 278
British Waterways 133
Broadmead Retail Consolidation Centre 295
Browne, M and Gomez, M 292
Browne, M, Allen, J and Leonardi, J 321
Browne, M, Nemoto, T, Visser, J et al 298, 299, 301
Browne, M, Rizet, C, Anderson, S et al 12, 48
Browne, M, Sweet, M, Woodburn, A and Allen, J 16
Browning, B and White, A 211
Brundtland Commission 4, 348
Buckley, H 243
Building Research Establishment
Environmental Assessment Method (BREEAM) 193–94
Burns, R 88
Button, K J 41, 42
ByBox 264
Campaign for Better Transport 274
Carbon Disclosure Project 67
carbon footprinting
guidelines 52–53
process 54, 54–61
success factors 61
Carbon Reduction Commitment Energy Efficiency Scheme 193
Carbon Trust 16, 52, 53, 54, 58, 175, 179, 181, 183, 185, 186, 193, 199
Good Practice Guide 319 184
CarbonView 59
Cargotram 296
Cariou, P 165
Carlsson, F and Johansson-Stedmann, O 321
Carter, C R and Easton, P L 16
Carter, C R and Ellram, L M 12, 256
Case for Rail, The 156
Cattryssse, D G and Van Wassenhove, L N 106
CE Delft 72, 75, 78, 82
ceteris paribus 165
Chan, C C and Chau, K T 321
Chao, I-M, Golden, B L and Wasil, E 226
Chapagain, A and Ellram, L M 12, 256
Case for Rail, The 156
Cattryssse, D G and Van Wassenhove, L N 106
CE Delft 72, 75, 78, 82
ceteris paribus 165
Chan, C C and Chau, K T 321
Chao, I-M, Golden, B L and Wasil, E 226
Chapagain, A and Orr, S 281
Chartered Institute of Logistics and Transport (CILT) 191, 215
Chatterley Park 197, 197, 199
Cherrett, T J and Hickford, A J 259
Cherrett, T J and McLeod, F N 264
Chicago Convention 1944 356
Choosing and Developing a Multi-modal Solution 140
Christiaanse, E, van Diepen, T and Damsgaard, J 328
Christidis, P and Leduc, G 218
Christopher, M C 19, 213
Chronopost 296
CITY BOX 291
CITY FREIGHT 291
Cityporto 296
Civic Trust et al 11
CIVITAS I Initiative 291
Clean Urban Transport in Europe (CUTE) initiative 318
Clements, A 214
Climate Change Act 51
Climate Change Levy 193
Climate Change Programme 2006 316
CO2 emissions 3, 4, 21, 32, 35–36, 43, 65, 78, 88, 139, 141, 247, 347
auditing 62–63, 67–68, 229
from aviation 158, 160–62, 277, 356
and benchmarking 246
and biofuels 314, 317, 319
carbon offsetting 60
CO2 equivalents 35, 52, 59–60, 112
e-business 339
electric vehicles 322
and failed deliveries 337
and night-time deliveries 39
and NOx emissions 146, 166
from shipping 163–66
and transport modes 134, 134–35
from vans 154, 336
and vehicle speed 40, 40, 80, 81, 230
and vehicle utilization 66–67, 67, 117, 209, 214, 217, 247–48
and warehousing 175, 176, 187, 191, 192, 195, 196
Coase, R H 73
‘cold-ironing’ 166
Collection and Disposal of Waste Regulations 1984 265
Collins, W J, Derwent, R G and Johnson, C E 318
Comet 333
Commercial Motor 149, 241
Commission for Integrated Transport 154, 336
Committee on Climate Change 4, 159, 160, 162
Community Resource Network UK 261
Company Van Survey 91, 152
Composite Sustainable Development Index 109
Comprehensive Assessment System for Building Environmental Efficiency (CASBEE) 194
Computer Aid International 262
congestion 40–41, 78, 80, 230–32
Container Shipping Information Service (CSIS) 163, 164
Contingency Valuation Method 76
Continuing Survey of Road Goods Transport (CSRGT) 46, 84
Control of Pollution Act 1974 265
Cooke, J A 214
Cooper, J C 359
Cooper, J C, Black, I and Peters, M 9
Cooper, J C, Browne, M and Peters, M 39
Corbett, J J, Winebrake, J J, Green, E H et al 163
Cordeau, J-F and Laporte, G 226
COST 321 11
Council of Logistics Management 12
Coyle, J J, Bardi, E J and Langley, C J 106
Coyle, M 249
Cranfield University 215
CREATE (Community Recycling and Training) 261
CRISP 261
Crowley, J 328
Cruijssen, F C A M 214
Cullinane, S L, Edwards, J B and McKinnon, A C 336
Current, J, Min, H and Schilling, D 106
Daniel, E M, Hoxmeier, J, White, A et al 328
Danzig, G B and Ramser, J M 224
Daskin, M 105
Davies, J 188
Davis, R 281
Davis, T 113, 114
Days Aggregates 143
Debauche, W and Decock, D 217
De Brito, M P and Dekker, R 254
De Jong, G et al 360
Dekker, R, Fleischmann, M, Inderfurth, K et al 12
de Koster, M B M 336
Delivering a Sustainable Railway 138
Delivering a Sustainable Transport System: The logistics perspective 138
Delle Site, P and Salucci, M 291
Delphi 19
Delucchi, M A and Lipman, T E 321
Den Boer and Schroten 38
Department for Environment, Food and Rural Affairs (Defra) 35, 53, 54, 59, 60, 62, 63, 78, 84, 134, 264, 275, 281, 282, 317
Department for International Development (DfI) 278
Department for Transport (DfT) 41, 65, 68, 175, 229, 302, 336
and alternative fuels 314, 315, 316, 318, 319
and developing greener transport 152, 153, 154, 155
and evaluating environmental costs 81, 84, 88, 89, 91
and fuel efficiency for road freight 240, 243, 244, 247, 248, 249
and modal shift 131, 132, 135, 140, 141, 142
and public policy 348, 353, 354, 355, 357
and vehicle utilization 206, 214, 217
and waste management 254, 255, 256, 259
Department of Communities and Local Government (DCLG) 175, 176, 181, 193, 198
Department of Energy and Climate Change (DECC) 32, 134, 150, 157
Carbon Plan 138
Department of Environment, Transport and the Regions (DETR) 4, 10, 14, 205, 212, 291, 302, 348, 349
A New Deal for Transport: Better for everyone 290
Sustainable Distribution 290
‘despeeding’ 165
Dessouky, M, Rahimi, M and Weidner, M 229
Deutsche Post 19, 296
DFF International 237
DHL 19, 47, 296, 314, 322, 323
Dhooma, J and Baker, P 188
Dial-A-Ride Problem (DARP) 226, 227
Directive on Distance Contract 253, 257
Directive on Packaging and Packaging Waste 258
Disney, S, Potter, A and Gardner, B 214
Doll, C and Wietschel, M 38,39, 40
Dove Recycling 263
Drezner, Z and Hamacher, H W 105
drivers, for green logistics 17, 17
Dror, M 228
Duhamel, C, Potvin, J-Y and Rousseau, J-M 225
Duleep, K G 238
Easterling, W E, Aggarwal, P K, Batima, P
et al 283
eBay 334
Eco-Compass 109
Eco-Index Methodology 109
Eco-Indicator 99 109
Eco-Points 109
Eddie Stobart Ltd 143
Eddington Transport Study, The 138
eDRUL 291
Edwards, J B and McKinnon, A C 339
Edwards, J, McKinnon, A and Cullinane, S
337, 339
Edwards-Jones, G, Mila i Canals, L,
Hounsome, N et al 272
Eglese, R W, Maden, W and Slater, A
229, 231
Ehmke, J F, Meisel, S and Slater, A 229,
232
electric vehicles 150, 162, 187, 320–21,
322
electronic data interchange (EDI) 328
electronic logistics marketplaces (ELMs)
328–32
Electronic Stability Program 155
Element Energy 155
Emma Maersk 164
Energy Conservation Law 149
energy conservation opportunities (ECOs)
189
Energy Efficiency Best Practice
Programme 181
Energy Efficiency Design Index (EEDI) 165
Energy Efficiency Office 239
Energy Efficiency Operational Indicators
(EEOI) 165
Energy Information Administration (EIA)
153, 154
Energy Performance Certificates 192, 193
192, 193
Engineering and Physical Sciences Research
Council Green Logistics project 135
Enhanced Capital Allowances 193
Enterprise Resource Planning (ERP) 328
Environment Agency 133, 258, 260, 263
Environmental Protection Act 1990 263,
265
Environmental Protection Agency (EPA)
37, 47, 55, 244, 317, 363
environmental standards 43–45
environmental zones (EZs) 295, 304–07
environmentally responsible logistics (ERL)
13
Enviros Consulting 261, 264
Envirowise 258
Erdogan, S and Miller-Hooks, E 229
Erkut, E and Verter, V 228
Esper, T L and Williams, L R 211
ETSU 239
EUROCONTROL 160
European Aluminium Association 147
European Chemical Industry Council 53
European Commission 4, 9, 11, 71, 75, 76,
91, 96, 129, 139, 241, 289
and developing greener transport 149,
154, 155, 163
European Emission Trading Scheme
356
Freight Action Plan 139
Marco Polo programme 354, 357
and public policy 348, 350, 352, 353,
355, 357
White Papers on Transport 137, 348,
352–53, 355, 357
European Committee for Standardization
(CEN) 68
European Conference of Ministers of
Transport (ECMT) 71, 74
European Council 72
European Economics 357
European Emissions Trading Scheme 96,
167
European Environmental Agency (EEA) 90
European Federation of Transport and the
Environment 81, 218
European Green Car Initiative 323
European Logistics Association (ELA) 177
European LPG Association (AEGPL) 320
European Metal Recycling (EMR) 261
European Road Safety Observatory (ERSO)
41
European Waste Catalogue 260
Eurostat 208
Eurovignette Directive 72
exhaust gas recirculation (EGR) system
151, 239
ExternE 76
EyeforTransport 14, 187
Eyre, N, Fergusson, M and Mills, R 318
Eyring, V, Corbett, J J, Lee, D S et al 166
Faber Maunsell 350
Faber, J et al 165
facility location problem (FLP) 104–07
factory gate pricing (FGP) 110
Fairholme, N 47
Farahani, R Z, SteadieSeifi, M and Asgari, N 111
FareShare 261
Faruk, A C, Lamming, R C, Cousins, P D et al 16
Feederlink BV 143
Fernie, J and Hart, C 259
Fernie, J and McKinnon, A 333, 340
Fichter, K 336
Fife Diet 281
Findel 334
Fiorella, D, Schade, W, Beckmann, R et al 354
Flamig, H 290
Fleischmann, M 254
Fleischmann, M, Krikke, H R, Dekker, R et al 254
Fernie, J and Hart, C 259
Fernie, J and McKinnon, A 333, 340
Fichter, K 336
Fife Diet 281
Findel 334
Fiorella, D, Schade, W, Beckmann, R et al 354
Flamig, H 290
Fleischmann, M 254
Fleischmann, M, Krikke, H R, Dekker, R et al 254
Flight International 160
Food Chain Analysis Group 282
Food Ethics Council 278
Food Matters 283
Ford 134
Ford of Europe’s Product Sustainability Index 109
Forrester, J W 113
Forum of European National Highway Research Laboratories (FEHRL) 39
Foster, C, Green, K, Bleda, M et al 272
Frazelle, E 174
Freight Action Plan 139
Freight Best Practice Programme (FBP) 140, 244, 331, 354, 363
Freight by Water (FbW) 141
Freight Facilities Grants (FFGs) 140, 357
Freight on Rail 141
Freight Quality Partnerships (FQPs) 295, 301–02, 303
Freight Route Utilization Strategy 156
Freight Transport Association (FTA) 82, 141, 216, 239, 301, 302
Logistics Carbon Reduction Scheme 51
Freightliner 140, 155–56
Fu, L 227
Fu, Z, Eglese, R and Li, L Y O 225
Fuel Quality Directive 157
‘Fuel Stretch’ 245
Fuerst, F and McAllister, P 196
Furniture Reuse Network (FRN) 261, 262
Future of Rail, The 138
Future of Transport: A network for 2030 138
FV–2000 291
G Score method 109
Garnett, T 14, 274, 275, 277, 282
Garreau, A, Lieb, R and Millen, R 14
gas-fuelled vehicles 319–20, 322
Gavaghan, K, Klein, R C, Olson, J P et al 15
Gazeley 191, 192, 196, 197, 198
Geary, S, Chiderhouse, P and Towill, D 113, 115
Gendreau, M, Guertin, F, Potvin, J-Y et al 227
Geneletti, D 42
General Motors 318
generalized assignment problem (GAP) 106
Geoffrion, A M and Graves, G W 105
Gerstner, Lou 327
Giannouli, M, de Haan, P, Keller, M et al 42
GIFTS 291
Gilmore, D 16
GLC London Freight Conference 290
Golden, B L and Assad, A A 224
Golden, B, Raghavan, S and Wasił, E 224
Golding, A 259
Goldys, T J and Stank, T P 14
Goodwin, P 40
Gosain, S and Palmer, J W 329
Gould, J and Golob, T F 336
Green Book, The 84
green supply chain management (GSCM) 15–16
Green Value Report 181, 196
GreenBuildings.com 176
Greenhouse Gas Protocol 52, 58
‘Greening Transport’ 139
GREENSTAR 194
Greszler, A 147, 241
Haeckel, S H and Nolan, R L 120
Halldorsson, A and Skjott-Larsen, T 254, 266
Handling and Storage Solutions 187
Hanson, S and Giuliano, G 159
Harris, I, Mumford, C and Naim, M 111
Harris, I, Naim, M, Palmer, A et al 110, 111
Harrisdata 111
Hassell, M, Foulkes, M and Robertson, J 290
Haven Gateway Partnership 143
Hawthorne effect 248
Index

Hazardous Waste Directive 260
Health Protection Agency (HPA) 37
Heathrow Retail Consolidation Centre 295
Hervani, A A, Helms, M M and Sarkis, J 109, 110, 112, 122
Hesse, M 178, 179, 196, 328
Hewlett-Packard 114
Heymann, E 163
Hill, J, Nelson, E, Tilman, D et al 317
Hill, N, Finneghan, S, Norris, J et al 43
Hinde, S and Dixon, J 279
HM Treasury 84
Holmberg, K, Ronnqvist, M and Yuan, D 105, 106
Holmen, B A and Niemeier, D A 32
Holmes, J and Hudson, G 195
Horvath, L 328
‘hotelling’ 166
Hugo, A and Pistikopoulos, E 111
Hutchison Ports
hydrogen 317–19
IBM 327, 329
Ichoua, S, Gendreau, M and Potvin, J-Y 227
Ideal X 164
IDIOMA 291
IGD 206, 214
Impact Pathway Approach 76
India Aviation 280
INFRAS 38, 46, 75
Infrastructure Planning Commission (IPC) 139
Insight 14, 16
Institute for City Logistics (ICL) 292
Institute for Energy and Environmental Research (IFEU) 46
Institute of Environmental Management and Assessment (IEMA) 44, 45
Integrated Maritime Policy 137
Interactive Media in Retail Group (IMRG) 334
Intergovernmental Panel on Climate Change 145
International Air Transport Association (IATA) 158, 160, 162
International Assessment of Agricultural Knowledge (IAAK) 283
International Civil Aviation Organization (ICAO) 159, 160
International Council on Clean Transportation (ICCT) 163, 165, 166, 167
International Maritime Organization (IMO) 36, 163, 165, 362
International Partnership for the Hydrogen Economy 317
International Road Transport Union (IRU) 73, 80
International Transport Forum 147, 218, 349, 359
ISO 14000 13, 55, 331
ISO 14064–1 53, 57, 60
ISO 14064–2 53
ITT Flygt 110
ITT Flygt Sustainability Index 109
J Sainsbury 224
Jackson, G C 11
Jahre, M 12
Janic, M 39
Johansson, C and Burman, L 305
John G Russell (Transport) Ltd 143
John Lewis 196
Johnson, E 181, 187
Joint Expert Group on Transport and Environment 305
Jones Lang LaSalle 196
Jungeheinrich 188
just-in-time (JIT) delivery 212–13
Kahn Ribeiro, S and Kobayashi, S 4
Kahn Ribeiro, S, Kobayashi, S, Beuthe, M et al 145
Kallehauge, B, Larsen, J and Madsen, O B G 225
Kamakate, F and Schipper, L 238, 312
Kanter, J 166
Kara, B Y and Verter, V 228
Karkazis, J and Boffey, T B 228
Karplus, V J, Paltsev, S and Reilly, J M 323
Kassel, R 163
Keynote 338
Khoo, H H, Spedding, T A, Bainbridge, I et al 110
Kiala 264, 296
Kimberly-Clark 187, 214
KingSturge 178, 181, 196
Klassen, R D and Johnson, F 15
K-Line 143
Klose, A and Drexel, A 105
Kneifel, J 195
Knight, I, Newton, W, McKinnon, A et al 218
Kohler, U 290
Kohler, U and Groke, O 290
Kohn, C and Huge-Brodin, M 14, 110
Kok, A L, Hans, E W and Schutten, J M J 231
Kolen, A W J, Kan, A H G R and Trienekens, H W J M 225
Kroger, K, Fergusson, M and Skinner, I 336
Kroon, L and Vrijens, G 259
Kuehne + Nagel 143, 214
Kyoto Protocol 35, 58, 163
La Petite Reine 296
Lake, A and Townshend, T 279
Lamming, R and Hampson, J 15
Landfill Allowance Trading Scheme (LATS) 264
Landfill Directive 257
Landfill Regulations 2002 258
Lang, T and Heasman, M 279
Langer, T 238
Lau, H C, Sim, M and Teo, K M 225
Laudon, K C and Traver, C G 327
Lawson, K, Michaelis, C and Waldron, D 363
Le Blanc, H M, Crujijsen, F, Fleuren, H A et al 110
Leadership in Energy and Environment Design (LEED) 194
Leonardi, J and Baumgartner, M 242, 247
Letchford, A N, Lysgaard, J and Eglese, R W 226
Lewis, C N 329
Lewis, I 212
Lieber, K J and Lieb, R C 17
Liepe, J, Malaviya, N and Pinot, S 72
Life Cycle Index 109
life-cycle analysis (LCA) 16, 47–48, 111, 179, 273–74
Liimatainen, H and Pollanen, M 238
Lindholm, M and Behrends, S 290
List, G F, Mirchandani, P B, Turnquist, M A et al 228
Littlewoods 334
Living Planet Index 109
location analysis problem see facility location problem (FLP)
Logistics Manager 187
Logistics Triad Uncertainty Model 116–17, 117
London Construction Consolidation Centre 295
Lopez, J C, Baille, A, Bonachela, S et al 277
Lorries and the Environment Committee 8, 290
Lorry Control Scheme 296
Low Emission Zone in Europe Network (LEEZEIN) 304
low emissions zones (LEZs) see environmental zones (EZs)
Lozano, A, Munoz, A, Macias, L et al 228
MacGregor, J and Vorley, B 278
Macintosh, A and Wallace, L 138
MacLeod, F 320
MacLeod, P 187
Maddison, D, Pearce, D, Johansson, O et al 73, 76, 77
Maden, W 231
Maersk 164
Malcolm Group, The 143
MAN 149
Mansell, G 212
Marien, E J 256
Marinete, Econ, Carnegie-Mellon et al 167
Marks & Spencer 187
Mason-Jones, R and Towill, D 113, 114, 115
Matos, F J F and Silva, F J F 351
Matthews, H S and Henrickson, C T 14
Matthews, H, Hendrickson, C and Soh, D L 339
Maut 356
McKinnon, A C and Ge, Y 208, 213, 246
McKinnon, A C and Piecyk, M I 45, 53, 62, 231
McKinnon, A C and Woodburn, A 9, 14, 22
McKinnon, A C, Piecyk, M I and Somerville, A 353
McKinnon, A C, Stirling, I and Kirkhope, J 248
McLeod, F, and Cherrett, T J 265
McLeod, F, Cherrett, T and Song, L 337
McLeod, F, Cherrett, T and Waterson, B 265
Meersman, H and Van de Voorde, E 352
Meimbresse, B and Sonntag, H 291
METRANS 292
Metropolitan Transport Research Unit (MTRU) 82
Michelin 243
Mila i Canals, L, Cowell, SJ, Sim, S et al 276, 277
Mila i Canals, L, Munoz, I, Hospido, A et al 278
Min, H 226
Min, H and Galle, W P 15
Min, H and Kim, I 16
Mingozzi, A, Giorgi, S and Baldacci, R 225
Ministry of Economy, Trade and Industry 149
Miniwatts Marketing Group 327
MIRACLES project 263
Mitchell, R C and Carson, R T 76
Mode Shift Benefit Values 84
Modern Ports: A UK policy 138
Mohammed-Kassim, Z and Filippone, A 240
Momenta 153
Monoprix 296
Montane, F A T and Galvao, R D 226
MOSCA 291
Motor Industry Research Association (MIRA) 239
‘Motorways of the Sea’ 139
Mukhopadhyay, S K and Setaputra, R 256
Mumford, C 111
Munoz, I, Mila i Canals, L and Clift, R 278
Munuzuri, J, Cortes, P, Guadix, J et al 291
Murphy, P R and Poist, R F 5, 7, 13
Murphy-Bokern, D 275
Nag, B, Golden, B L and Assad, A A 226
Naim, M M, Potter, A T, Mason, R J et al 114
Naim, M M, Potter, A T, Sanchez-Rodrigues, V et al 118, 120
Naim, M, Aryee, G and Potter, A A 114
NASA 318
Nathaniel Lichfield and Partners 290
National Academies of Science 148
National Atmospheric Emissions Inventory (NAEI) 84
National Renewable Energy Laboratory (NREL) 319
National Road Traffic Survey (NRTS) 84, 91
Natural and Bio Gas Vehicle Association (NGVA) 319
Nearby Delivery Area (ELP) 295, 296
NERA Economic Consulting 88
Nestle 214
NetRegs 259
Network for Transport and Environment (NTM) 61–62, 162
Network Rail 133, 141, 156
New Comprehensive Program of Logistics Policies, The 301
New Deal For Transport, A: Better for Everyone 138
Newing, R 213
Nielsen 332
Nike 191
Nikolaeva, R 332
Nissan 212
noise pollution 38–39
nominated day delivery system (NDDS) 211
Nordhaus, W 78
NORWRAP 263–64
NOx emissions 37, 47, 84, 151, 153, 161, 304, 305, 362
from aviation 161–62
and biofuels 316
and CO2 emissions 146, 166
and diesel engines 154
from shipping 163, 166
NYK 164
Nylund, N and Erkkila, K 242
Oddy, D J 281
Office of Rail Regulation 132, 141
Ogden, K W 11, 301
Oncan, T 106
online retail 332–34, 338–39
OOCL 143, 163
OR/MS Today 225
Organisation for Economic Co-operation and Development (OECD) 8, 147, 218, 359
Owen, S H and Daskin, M S 105
Packaging and Packaging Waste Regulations 261
Padgett, J, Steinemann, A C, Clarke, J H et al 173, 179, 181
Palmer, A 229
Pan, S, Ballot, E and Fontane, F 214
Papadopoulos, A, Stylianou, A and Oxizidis, S 193
Papastavrou, J D 227
‘PaperSave’ scheme 264
Parcel Force 264
Park, M and Regan, A 337
PAS 2050 52, 58
 Paxton, A 9
PE International 13, 18
Peck, H, Abley, J, Christopher, M et al 113, 115, 120
Penner, J E, Lister, D H, Griggs, D J et al 161
Perez-Lombard, L, Ortiz, J and Pout, C 181
Perez-Martinez, P J 238
Pettit, D 8, 290
photochemical smog 36
Piecyk, M I and McKinnon, A C 40, 51, 65, 219
PIEK programme 296
Pigou, A C 71
Pishvaee, M S, Torabi, S A and Razmi J 112
PIEK programme 296
Pigou, A C 71
Pishvaee, M S, Torabi, S A and Razmi J 112
PM10 particles 32–33, 37, 47, 84, 151, 305, 362
Ponomarov, S Y and Holcomb, M C 120
Pope, C A, Burnett, R T, Thun, M J et al 33
Porter, J 164
Potter, A T, Lalwani, C S, Disney, S M et al 110
Powerboss Eluma 184
Prater, E 115
Prater, E, Biehl, M and Smith, M A 114
PricewaterhouseCoopers 19, 338
Primerano, F, Taylor, MA, Pitaksringkarn, L et al 337
PROGRESS 281
Prologis 196
PROMIT 291
Publishers Association 338
Punakivi, M, Yrjola, H and Holmstrom, J 215
Quak, H J 296
Quariguasi Frota Neto, J, Bloemhof-Ruwaard, J M, van Nunen, J A E E et al 111
‘radiative forcing’ 166
Rai, D, Sodagar, B, Fieldson, R et al 195
Rail Environmental Benefit Procurement Scheme (REPS) 140
Rail Freight Group 141
Rail Safety and Standards Board (RSSB) 134, 156, 157, 158
Ranch, P 150
Rao, K, Grenoble, W and Young, R 14
Rao, P and Holt, D 14
RASCAL 262
Raux, C and Alligier, L 96
REDEFINE 9
Redpack Network 264
Reed, R and Wilkinson, S 179, 193
REFORM 291
Regeneris 262
Renewable Transport Fuel Obligation (RTFO) 316
Resource Recovery Forum (RRF) 261
revealed preference surveys 76
reverse logistics 12–13
Ricardo 148, 151, 156, 239
Ricci, A and Friedrich, R 78, 81
Rizet, C, Browne, M, Cornelis, E et al 16
Rogers, D S and Tibben-Lembke, R S 254
Rogers, L K 186
Rogers, P 37
Rosman, P F 42
Ross, C and Pregner, P 177
Ross, G T and Soland, R M 106
Roth, A 305
Rowlands, P 329
Royal Commission on Environmental Pollution (RCEP) 34
Royal Institution of Chartered Surveyors (RICS) 181, 196
Royal Mail 264, 334
Royal Society 37, 323
Rushton, A 11
Ruzzenenti, F and Basosi, R 238
Ryan, J 196
Safe and Fuel Efficient Driving (SAFED) programme 228–29, 247, 360
Sager, J, Apte, J S, Lemoine, D M et al 321
Sainsburys 322
Samuelsson, A and Tilanus, B 207
Sanchez-Rodrigues, V, Potter, A, Naim, M et al 113, 116, 117
Sandberg, U and Ejsmont, J A 38
Sansom, T, Nash, C, Mackie, P et al 78
Sarkis, J 15
Sarkis, J, Meade, L M and Talluri, S 212
Saunders, C and Barber, A 275
Saunders, T 193, 195
Savitz, A W 348
Savvanidou, E, Zervas, E and Tsagarakis, K P 312
Schipper, L J and Fulton, L 32
Schmidtchen, D, Koboldt, C, Monheim, J et al 73
Schmitt, W F, Szko, A and Schaeffer, R 322
Schoemaker, J, Dasburg, N and Allen, J 305
SCOR Model 115
Scrase, I 179
SEAMO2 111
Searchinger, T, Heimlich, R, Houghton, R A et al 280
Secomandi, N 227
selective catalytic reduction (SCR) system 151, 239, 242
‘SESAR’ 161
Shakantu, W, Tookey, J E and Bowen, P A 254
Sharp, C and Jennings, A 11, 39, 40, 42, 43
Index

SHD Magazine 188
Sheffi, Y and Rice, J B 120
Sheffield Hallam University 215
Shell 244
Shih, L 257
Ship Energy Efficiency Management Plan (SEEMP) 165
Sim, S 277
Sim, S, Barry, M, Clift, R et al 275, 276, 277
Singh, R K, Murty, H R, Gupta, S K et al 109
SITA Environmental Trust 264
Sitetrust 264
Skinner, I, Fergusson, M, Kroger, K et al 336
SkySails 165
‘small order problem’ 11
SMART FREIGHT 291
SmartWay programme 363
Smith Electric Vehicles 320
Smith, A, Watkiss, P, Tweddle, G et al 14, 41
Smith, P, Martino, D, Cai, Z et al 283
Smithers, R 336
SO2 Emission Control Areas (SECAs) 165
Society of Motor Manufacturers and Traders (SMMT) 80, 154
SOFA project 261
Soil Association 276, 278
Somerville, H 162
Sonneveld, K 216
Sorrell et al 238
Southwest Research Institute 147, 361
SOx emissions 36, 37, 84, 163, 165–66, 319
Sperling, D 315
Srivastava, R 15, 16
Stank, T and Goldsby, T J 113–14
Stantchev, D and Whiteing, T 291
START 291
stated-preference surveys 76–77
Stathopoulos, A, Valeri, E and Marcucci, E 292
Steinbergen, T and Lopez, E 322
Steuly, M 156
Stern, N 78, 88
Stevens, G 103
Stock, J 12
Stone, A 333
Storey, R and Boyes, G 154
Streamline 340
SULOGTRA 9
Supertruck project 148
Supply Chain Council 115
Supply Chain Management Institute 19
Survey of Foreign Vehicle Activity in Great Britain (FVA survey) 88
Survey of Privately Owned Vans 91
Sustain 272, 281
Sustainable Distribution Fund 140
Sustainable Distribution: A strategy 138
Sustainable Rail Programme 158
Sustainable Society Index 109
Suzuki, Y 230
Swiss Federal Office for Spatial Development 359
Swiss Heavy Vehicle Fee (HFV) 358
Talley, W K 352
Taniguchi, E and Shimamoto, H 227
Taniguchi, E, Thompson, R G, Yamada, T et al 12
‘tank tourism’ 74
Tapio, P 10
tare weight 147, 241–42
Tavakkoli-Moghaddam, R, Saremi, A R and Ziaee, M S 225
Tavasszy, L A and van Meijeren, J V 355
Taylor Intelligence 258
TEN-T priority network 139
Tesco 68, 110, 142, 143, 187, 214, 224, 322
Thomas, G 161
Thompson, R and Taniguchi, E 291
‘Topfer Decree’ 261
Toth, P and Vigo, D 223, 224, 225
Towards a Sustainable Transport System: Supporting economic growth in a low carbon world 138
Towill, D R 113
Toyota Material Handling 188
Tozer, D 164
Tracey, M, Chong Leng Tan, Vonderembse, M et al 14
Trans-European Transport Network programme 139
Transport and Mobility Leuven, TNO, LCPC et al 218
Transport and Road Research Laboratory 42
Transport Canada 247, 361
Transport for London 47, 305
Transport Innovation Fund (TIF) 140
Transport Key Performance Indicator (KPI) surveys 207
Transportation Research Board 217
Trebiol, B 187, 188
Treloar, G, Fay, R, Ilozor, B et al 174
TREMOVE 46
‘triple bottom line’ 4
Trucking Association 241–42
Tsai, P, Shah, N and Pantelides, C C 113
Tsoulfas, G and Pappis, C 173, 179
Turban, E, McLean, E and Wetherbe, J 327
UIC, CER, EIM et al 218
UK Air Quality Archive 62
UK Green Building Council 175, 181, 191, 192, 193, 198
UK Institute of Logistics 12
UK Petroleum Industry Association (UKPIA) 314, 315, 320
UK Warehousing Association (UKWA) 175
Uncertainty Circle Model 114–15, 115
UN Conference on Trade and Development (UNCTAD) 278
UN Environmental Programme (UNEP) 316
Unilever 214
UN Intergovernmental Panel on Climate Change (UN IPCC) 35
Union of Concerned Scientists 314
UNITE 74
United Biscuits 214
University of Guelph 281
University of St Gallen 216
UPS 47
urban consolidation centres (UCCs) 295, 296–300
advantages and disadvantages 298
US Department of Energy 241
US Department of Health and Human Services 37
UTOPIA 291
Vachon, S and Klassen, R D 15
Vaghi, C and Percoco, M 291
Valenzuela, C L 111
Van der Vorst, J and Beulens, A 113, 114, 115
Van Hoek, R 15
Van Woensel, T, Creten, R and Vandaele, N 229
Vehicle and Operator Services Agency (VOSA) 155
Vehicle Certification Agency 154
Vehicle Licensing Statistics 91
vendor-managed inventory (VMI) 214
Verband der Automobilindustrie (VDA) 154
vibration 39–40
Vieira, I, Berell, H, McDaniel, J et al 218
Vishwanath, V and Mulvin, G 333
Walkers 278
Walley, N and Whitehead, B 44
Walmart 224, 363
Walton, S V, Handfield, R B and Melnyk, S A 15
Wang, Y, Potter, A and Naim, M 329
Wang, Y, Potter, A, Naim, M et al 330
Ward, D, Tyler, P, Wilson, P et al 156
Wardrop, J 39
Warwick, H R I 281
Wassan, N A, Nagy, G and Ahmadi, S 226
waste 42, 254–66
Waste and Resources Action Plan (WRAP) 260, 261
Waterborne Freight Grant (WFG) 140, 357
Waters, C 113
Waterways for Tomorrow 138
Watts, G R, Nelson, P M, Abbot, P G et al 38
Weeks, Jonathan 12
Weltevreden, J 332, 340
Whitelegg, J 8, 14, 348
Wilding, R D 113
Williams, A 277
Wilson, D T and Vlosky, R P 328
Wise Moves 274
Wohlk, S 228
Wolf, C and Seuring, S 16
Woodburn, A 135
Woodcock, J, Banister, D, Edwards, P et al 279
Working Time Directive (WTD) 218
World Business Council for Sustainable Development (WBCSD) 51, 53, 57, 58, 61, 63, 175
World Economic Forum 4, 53, 66, 145, 165, 175, 176
World Health Organization (WHO) 278
World Resources Institute (WRI) 51, 53, 57, 58, 61, 63
Wu, H-J and Dunn, S C 13, 14, 256, 259
Wyatt, K 184
Xiao, Y, Zhao, Q, Kaku, I et al 230
Xing, Y and Grant, D B 333
Yang, W-H, Mathur, K and Ballou, R H 227
Young’s Seafood Company 276
Zarkadoula, M, Zoidis, G and Tritopoulou, E 229